<name> Class: Honors Geometry Date: <date> Topic: Lesson 1-1 (Patterns and Inductive Reasoning)

Inductive Reasoning	Observe data, recognize patterns, make generalizations.		
Conjecture	Hypothesis Generalizations made using inductive reasoning (IR) Assumes observed pattern will continue.		
Why important?	Geometry focused on "proving" things Observe patterns \rightarrow form conjecture \rightarrow test conjecture		
	Example: Look at several rectangles, observe diagonals are equal len.		
	<u>Observation</u> : These rectangle's diags are equal len <u>Conjecture</u> : All rect's diags are equal len <u>Proof</u> : Positively, w/out any doubt, show diags are equal *FOR ALL* rectangles.		
Sufficient for proofs?	<u>No</u> can't prove conjecture, can only disprove it.		
Counterexample	Case that proves conjecture wrong. Only takes one to disprove the conjecture.		
Deductive Reasoning	Logical reasoning Process: if certain statements are accepted as true, then other statements can be shown to follow from them. Used to prove a conjecturegeometric proofs.		
	Inductive reasoning – form conjecture Counterexample – disprove conjecture Deductive reasoning – prove (or disprove) conjecture		
How reason inductively?	 Ask: Any patterns? Sequence? How similar? Anything same in each? What in common? How different? What changed? What is added each time? How relate to each other? 		
Inductive Reasoning Steps	 Identify what is changing Make a conjecture about how things are changing Use conjecture to predict the next step Check it If false, conjecture is wrong. If right, try a few more steps (doesn't prove it tho!) 		

<name> Class: Honors Geometry Date: <date> Topic: Lesson 1-1 (Patterns and Inductive Reasoning)

Algebra example	Observe:	$0 \cdot 0 = 0$ $1 \cdot 1 = 1$
	Conjecture:	$\mathbf{x} \cdot \mathbf{x} = \mathbf{x}$
	Check next s	tep: $2 \cdot 2 = 4$ <i>false!</i> Counterexample that disproves our conjecture
Silly Example	Observe: Conjecture: Wrong!	
Book examples 1-4	<optional as="" needed="" notes=""></optional>	